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Multibox strategy for constructing highly accurate bound-state wave functions
for three-body systems
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Department of Physics, University of Windsor, Windsor, Ontario, Canada N9B 3P4

~Received 11 April 2001; published 30 August 2001!

Variational, multibox approach is proposed to construct extremely accurate, bound-state wave functions for
arbitrary three-body systems. The high efficiency of our present approach is based on an optimal choice of
nonlinear parameters in the exponential basis functions. The proposed method is very flexible, since the final
wave function can also include a large number of separately optimized cluster fragments. The wave functions
obtained are very compact and highly accurate. Such wave functions can be used to compute various bound
state properties for different three-body systems. The proposed approach has been successfully tested on a large
number of actual systems. It is shown that the present approach can be used to solve various three-body
problems with, in principle, arbitrary precision. In particular, the long-standing problem of highly accurate
determination of the weakly bound~1,1! states in theddm anddtm muonic molecular ions has finally been
solved. The determined binding energies are21.974 988 088 065310210 eV and 20.660 338 7461
31028 eV, respectively.
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In this study an advanced and variational approach is p
posed and discussed. This approach can be used to dete
to high accuracy, the bound-state spectra for various th
body systems. In fact, the proposed approach is found to
very effective and quite simple in solving a large number
bound-state, three-body problems. The accuracy of
bound-state determination in this approach is usually hig
than in other competing methods, and more important,
accuracy can easily be increased. It should be mentio
however, that highly accurate calculations are of great imp
tance for many Coulomb three-body systems. For insta
to compute the hyperfine splitting in the helium-muonic
oms one needs to determine the electron-nucleus
electron-muonic delta functions with a maximal absolute
ror less than 131028 a.u. @1#. The total bound-state ene
gies for such systems are'400 a.u. It can be estimate
from this that the required wave function must reproduce
ground state energy with an absolute error less than'1
310218 a.u. Only for such highly accurate wave function
eight significant figures as required for the two mention
delta functions, are stable. Also, the electron-positron
nucleus-nucleus delta functions are very important for p
dicting the corresponding annihilation rates in the Ps2 ion
and fusion rates in the muonic molecular ions, respectiv
~see, e.g.@2–4#!. Moreover, highly accurate nonrelativist
wave functions can be used to compute relativistic a
Q.E.D. corrections for some actual atoms and ions. In f
this is the only way to compute these corrections, since
alternative approach based on the Dirac equations canno
used directly for three-body systems~see, e.g.,@5#!.

The nonrelativistic Hamiltonian for an arbitrary Coulom
three-body system can be written in the form

H52
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where the so-called quasiatomic units@\51,e51,mmin51,
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and mmin5min(m1,m2,m3)# are used. In this equation
q1 ,q2 ,q3 are the particle charges, whilem1 ,m2 ,m3 are their
masses. The main goal of the present study is to determ
~with high accuracy! the bound states of the correspondi
Schrödinger equation (H2E)C50, whereH is the Hamil-
tonian andE,0. Another goal is to perform highly accurat
computations of various bound-state properties. To determ
the bound-state energies and corresponding wave funct
we apply an improved version of the exponential variatio
expansion in relative coordinatesr 32, r 31, and r 21 ~where

r i j 5r j i 5urW i2rW j u, for more details see, e.g.,@6#!. Note, how-
ever, that the three relative coordinatesr 32, r 31, andr 21 are
not really independent, since e.g.,ur ik2r jku<r i j <r ik1r jk ,
where (i , j ,k)5(1,2,3). In general, this produces a few a
ditional restrictions on possible values of nonlinear para
eters that can be used in actual variational wave functi
@1#. In fact, such relations between the nonlinear parame
are needed to guarantee convergence of the correspon
integrals in all matrix elements@6#. Obviously, in this case
the optimization of these nonlinear parameters in the ex
nential variational expansion cannot be very effective.

To avoid this problem and increase the total efficiency
the exponential variational expansion in this study, the
called mixed form of the basis functions is used@1#. In such
a form the three perimetric coordinatesu1 , u2, andu3 are
used to represent the exponential part of each basis func
The angular, and other parts, of each basis function can
written either in the relative coordinates or in perimetric c
ordinates. The perimetric coordinates are simply related
the three relative coordinates:ui5

1
2 (r ik1r i j 2r jk), and

therefore,r i j 5ui1uj , where (i , j ,k)5(1,2,3). The perimet-
ric coordinates are truly independent, and each of them
ies from 0 to1`.

Thus, in the general case, the trial wave function for
(L,M ) bound state in an arbitrary three-body system is r
resented in the form
©2001 The American Physical Society04-1
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CLM5
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~11k P̂21!
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i 51
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l 15e

L

CiY LM
l 1 ,l 2~r31,r32!f i~r 32,r 31,r 21!

3exp~2a iu12b iu22g iu3!

3exp~ ıd iu11ıeiu21ı f iu3!, ~1!

where Ci are the linear ~or variational! parameters,
a i , b i , g i , d i , ei , and f i are the nonlinear parameter
and i is the imaginary unit. The functionsY LM

l 1 ,l 2(r31,r32)
are the so-called Schwartz@7# or bipolar harmonics,L is the
total angular momentum, andM is the eigenvalue of theL̂z
operator. An additional family of polynomial-type function
f i(r 32,r 31,r 21) can also be used in calculations to repres
some interparticle correlations. The operatorP̂21 is the per-
mutation of the identical particles in symmetric three-bo
systems, wherek561, otherwisek50. In the present study
k521 for the triplet state of the helium atom,k5(21)L

for the ppm andddm symmetric systems, andk50 for the
dtm ion. Furthermore, in all present calculations it is a
sumed thatf i(r 32,r 31,r 21)51 for i 51, . . . ,N.

In general, by using the variational expansion Eq.~1! one
can determine energy levels and variational wave functi
for such systems with very high accuracy. Obviously,
main problem is the optimal choice of the nonlinear para
eters in Eq.~1!. To perform such an optimization in a ver
effective manner, presently we have developed a variatio
multibox approach. This approach is essentially based o
optimal ~or smart! choice of the nonlinear parameters in t
exponential part basis functions Eq.~1! @8#. Note that, the
use of perimetric coordinates in the exponents of Eq.~1!,
instead of the relative coordinates, significantly simplifies
partial ~or complete! optimization of the nonlinear param
eters. Indeed, the parametersa i ,b i , and g i ( i 51, . . . ,N)
in Eq. ~1! can be arbitrary positive numbers, while the p
rametersd i ,ei , and f i( i 51, . . . ,N) can be arbitrary rea
numbers. The simple conditionsa i.0, b i.0, and g i.0
( i 51, . . . ,N) must be obeyed to guarantee convergence
all integrals needed in computations. In fact, such a choic
nonlinear parameters, i.e., without any restriction, means
one can now use very effective optimization procedures,
therefore significantly better optimize these parameters t
was possible in our previous works~see, e.g.,@6#!. If the
exponential variational expansion is written in relative co
dinates, then some of the nonlinear parameters can be n
tive. In earlier works~see, e.g.,@6#!, however, we could no
use negative values for some of the nonlinear parame
since their optimization can generate infinite expressions
matrix elements. The negative nonlinear parameters are c
cally important in some cases for representing interpart
correlations. In particular, negative nonlinear parameters
really needed in highly accurate calculations of wea
bound, excited and cluster states. Complex values for s
of the nonlinear parameters in Eq.~1! are used to provide
high accuracy for adiabatic systems, where min(m1,m2)@m3
03670
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and q1q2.0 ~for more details see, e.g.,@6#!. Note that, for
such systems our method, based on Eq.~1!, does not make
use of the Born-Oppenheimer approximation@9#.

In general, the expansion Eq.~1! can be obtained by a
discretization of the Fourier~or Laplace-Fourier@10#! inte-
gral transform for the unknown wave function. Then, t
unknown values of the exact wave function at some quad
ture points~or lattice points! are replaced by the linear varia
tional coefficientsCi , which do not depend upon the nonlin
ear parameters in Eq.~1!. The general approach fo
generating variational expansions by using discretization
the different integral transformations can be found in@11–
13# ~see also references therein!. In general, the optimization
of the linear parametersCi in Eq. ~1! cannot produce highly
accurate wave functions unless the nonlinear parameters
varied. In fact, only methods based on the optimization
the nonlinear parameters in Eq.~1! can produce extremely
accurate wave functions. In particular, our present consid
ation deals with such an optimization.

It should be mentioned that initially the so-called regu
@14# and quasirandom choices@12# of the nonlinear param-
eters in the exponential variational expansion were propo
and used. Later, the quasirandom choice was applied to c
pute the bound-state spectra in muonic molecular ions@15#.
This simple approach allows one to compute various bo
states relatively quickly, but the final accuracy is not su
cient for solving many actual problems. For our present p
poses, it is important to note that if the regular or qua
random choices of nonlinear parameters are used, then
nonlinear parameters in Eq.~1! are not real parameters in th
method. They are usually called either the lattice points,
quadrature points. In fact, in these cases a few nonlin
parameters can be introduced for improving the overall e
ciency of the method. For instance, if the nonlinear para
eters are chosen quasirandomly from onea2b2g box in
three-dimensional space@or six-dimensional space for Eq
~1!#, then by using some effective algorithms for optimiz
tion of the box parameters, one can accelerate the con
gence of the results. However, the final accuracy of this
proved method is still not sufficient for some Coulomb thre
body problems.

To improve the final accuracy of Eq.~1! significantly in
our earlier work @6# another approach was proposed.
choose the nonlinear parameters in Eq.~1! we used a two-
stage procedure@6#. In fact, the first 6N0 ~or 3N0) such
parameters have been optimized carefully by using so
very effective algorithms. Here and below,N0 is the total
number of terms in the short-term or booster function, wh
is significantly less than the total numberN of basis func-
tions used in calculations. In general, the first stage of
method @6# generates very compact and accurate boo
wave functions. However, later it was found that the a
proach in@6# has the two following disadvantages:~1! the
second stage of the method is not effective; and~2! the con-
struction of the highly accurate booster functions requi
extensive computational resources. Inefficiency of the s
ond stage devaluates, in fact, the whole method. Indee
was observed that a better booster function does not alw
mean higher final accuracy. The reason is obvious, since
4-2
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MULTIBOX STRATEGY FOR CONSTRUCTING HIGHLY . . . PHYSICAL REVIEW E64 036704
second stage function essentially repeats the correspon
booster function. In other words, the quasirandom choice
the lattice pointsa i ,b i ,g i ,d i ,ei , and f i( i 51, . . . ,N) used
in the second stage of the procedure is far from an opti
choice. An optimal choice must produce, in the general ca
the lowest final~variational! energy for a given booster func
tion. The second disadvantage means that it takes a q
long time for some systems to produce sufficiently accur
booster wave functions, but main point is that without su
an accurate booster function the whole two-stage met
cannot work successfully.

Initially, our goal was to improve the second stage of t
method@6#. Also, we wanted to develop an independent p
cedure, which could be used independently and effectiv
even in those cases when the highly accurate booster w
function is unknown. The initial improvement has be
achieved by using the computerized version of the box o
mization, and by applying the perimetric coordinates in
exponents of Eq.~1! @1#. Then it became clear that the use
two, three, five, etc. different boxes, for choosing the latt
pointsa i , b i , g i , d i , ei , and f i in Eq. ~1!, produces sig-
nificantly better variational energies. Finally, the approa
has been developed to perform high precision, variatio
bound-state calculations for arbitrary three-body syste
Briefly, in our present approach nonlinear paramet
a i , b i , g i , d i , ei , and f i in Eq. ~1! are chosen quasiran
domly as in the older procedure~see, e.g.,@15,16#!, but now
we are using a few~up to 10! different boxes. In fact, this
means that we propose to use a multibound integration
main for the original Fourier integral transform wave fun
tion ~see, e.g.,@12#!. The geometrical sizes and positions
these boxes are optimized, i.e., they are the actual nonli
parameters of the method. Furthermore, there are also s
scaling parameters, which are optimized for each step~or
each pass! of the procedure. These parameters are use
find a proper balance between different parts of the t
function. Briefly, our present approach is a synthesis of
quasirandom choice of the nonlinear parameters from
box ~see, e.g.,@16#! and multiscaling optimization of suc
parameters@6#.

Let us present the following simplified version of the pr
cedure. The simplification means the use of the three-
version and restriction to a few scaling parameters. Furt
more, we shall assume that all exponents in Eq.~1! are real.
In other words, all parametersd i , ei , andf i in Eq. ~1! equal
zero identically fori 51, . . . ,N. In fact, these parameters a
really needed only for highly accurate calculations of t
adiabatic~or close to them! three-body systems. Finally, th
total number of nonlinear parameters in this version equ
28. This version of the procedure has been used extens
in our present calculations~see below!. The choice of the
nonlinear parameters in Eq.~1! proceeds as follows. Leti be
the number~or index! of the basis function in Eq.~1! (1
< i<N) and k5mod(i ,3)11, where mod(i ,3) designates
the modular division~i.e., an integer remainder after divisio
of i by 3!. Now, the parametersa i , b i , andg i are chosen
from the three positive intervals@A1

(k) ,A2
(k)#, @B1

(k) ,B2
(k)#,

and @G1
(k) ,G2

(k)#:
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a i5^^ 1
2 i ~ i 11!A2&&~A2

(k)2A1
(k)!1A1

(k) , ~2!

b i5^^ 1
2 i ~ i 11!A3&&~B2

(k)2B1
(k)!1B1

(k) , ~3!

g i5^^ 1
2 i ~ i 11!A5&&~G2

(k)2G1
(k)!1G1

(k) . ~4!

Here the symbol̂ ^•••&& designates the fractional part of
real number. Such a choice of thea i , b i , andg i parameters
is the first~main! stage of the procedure. The total number
actual nonlinear parameters used in this stage equals 1
3333 for the considered three-box version!. In fact, for
many Coulomb three-body systems the first stage alre
produces very accurate results and the second stage is
needed.

The second stage is essentially a scaling of the lat
points chosen in the first step. The scaling itself is perform
as follows. The families of the parametersa i , b i , and g i
~which correspond to the samek) are multiplied by the posi-
tive factorslk,1 , lk,2 , and lk,3 , respectively. Then, thes
three parameterslk,1 , lk,2 , and lk,3 are also varied. The
total number of such additional parameters equals nine
33). Also, one additional variational parameter is used
perform a scaling for all lattice points in Eq.~1!. Finally, this
method produces a properly balanced wave function that
resents the considered bound state very accurately.

Note that, the high efficiency of our present strategy
choosing of the lattice points in Eq.~1! is based on the fac
that in Eqs. ~2!–~4! any additional condition for the
A1

(k) ,A2
(k) , . . . ,G2

(k) points is not used. In particular, eithe
A1

(k)<A2
(k) , or A1

(k)>A2
(k) . The same is true for the

B1
(k) ,B2

(k) ,G1
(k) ,G2

(k) points. Furthermore, for anyk the rela-
tive position of the interval@A1

(k) ,A2
(k)# with respect to the

intervals@A1
(k21) ,A2

(k21)# and @A1
(k11) ,A2

(k11)# can be arbi-
trary. This is also true for the@B1

(k) ,B2
(k)# and @G1

(k) ,G2
(k)#

intervals. The results of calculations for different syste
indicate clearly that such a freedom in choosing the latt
points is one of the main advantages of our present appro
In fact, this allows the generation of extremely accura
variational wave functions for different systems~see results
below!.

Our present procedure can be modified easily to the c
when the short term~or booster! wave function is known. In
this case the indexi in Eqs.~2!–~4! changes fromN011 to
N. HereN0 is the number of basis functions in the boos
function, whileN is the total number of basis functions use
The cases when three-, four- and many-cluster functions
included in calculations can be considered in analogous m
ner. In any case, our presently developed multibox appro
produces a variationally optimal, orthogonal complement
the original cluster wave function. In other words, by usi
our present procedure one can obtain the best~in the varia-
tional sense! correction to the wave function known from
separate computations. This is an obvious advantage of
present approach in comparison with the original meth
used in@6#. Indeed, now the use of a more accurate boos
wave function does mean better final accuracy for the to
wave function.
4-3
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TABLE I. The total energies~E! of the `He atom@23S(L50)-state# in atomic units (me51,\51,e51) and for some (L,n) states in the
ppm, ddm, anddtm muonic molecular ions in muon-atomic units (mm51,\51,e51).

N E@ `He;23S(L50) state# E@ppm;(0,0) state# E@ddm;(0,0) state#

600 22.175 229 378 236 791 301 785 2 20.494 368 202 488 828 302 7 20.531 111 135 402 281 544 0
800 22.175 229 378 236 791 305 644 1 20.494 368 202 489 242 294 2 20.531 111 135 402 375 706 6
1000 22.175 229 378 236 791 305 712 5 20.494 368 202 489 311 905 9 20.531 111 135 402 384 135 5
2000 22.175 229 378 236 791 305 737 7 20.494 368 202 489 343 263 3 20.531 111 135 402 386 302 8
2250 22.175 229 378 236 791 305 738 1 20.494 368 202 489 344 591 5 20.531 111 135 402 386 345 1
2500 22.175 229 378 236 791 305 738 4 20.494 368 202 489 345 469 4 20.531 111 135 402 386 374 5

22.175 229 378 236 791 301 794a 20.494 386 820 248 931 69a 20.531 111 135 402 385 75a

N E@dtm;(1,0) state# E@ddm;(1,1) state# E@dtm;(1,1) state#

600 20.523 191 455 489 821 946 20.473 686 733 349 049 0 20.48 199 152 778 643 2
1000 20.523 191 456 282 037 570 20.473 686 733 827 595 5 20.48 199 152 962 856 7
1700 20.523 191 456 315 607 405 20.473 686 733 842 229 5 20.48 199 152 995 582 9
1900 20.523 191 456 315 772 556 20.473 686 733 842 447 5 20.48 199 152 996 358 7
2100 20.523 191 456 315 858 429 20.473 686 733 842 550 7 20.48 199 152 996 694 7
2300 20.523 191 456 315 906 521 20.473 686 733 842 606 2 20.48 199 152 996 960 1
2500 20.523 191 456 315 927 175 20.473 686 733 842 637 1 20.48 199 152 997 083 4
2700 20.523 191 456 315 937 144 20.473 686 733 842 653 5 20.48 199 152 997 171 3

20.5231914563027a 20.4736867338415a 20.481991528744a

aThe best variational results known from earlier calculations.
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In the present study, the proposed method is applied to
helium atom with infinitely heavy nucleus~or the `He atom,
for short! in its 23S state and to theppm, ddm, and dtm
muonic molecular ions. To designate the bound states
muonic molecular ions, it is very convenient to use rotatio
~L! and vibrational (v) quantum numbers. Such a (L,v)
classification scheme is based on the adiabatic~or
molecular! picture for muonic molecular ions. However, a
three particle masses in muonic molecular io
ppm, pdm, ptm, ddm, dtm, and ttm are quite compa-
rable with each other, and therefore, the so-called adiab
approximation@9# cannot be applied successfully to the
systems. Nevertheless, the approximate (L,v) classification
scheme is very convenient for muonic molecular ions. In
present study, we consider the symmetric muonic molec
ions ppm andddm in their ground~0,0! states and the non
symmetric iondtm in its ~1,0! and ~1,1! states, respectively
For theddm ion we also discuss the~1,1! state. Note that the
~1,1! states are weakly bound states in bothddm and dtm
ions ~see, e.g.,@16#!. Highly accurate determination of suc
states is very complicated, since it includes a large numbe
principal difficulties~see, e.g.,@15#!. In fact, the known en-
ergies of the~1,1! states for bothddm and dtm ions are
significantly less accurate than appropriate values obta
for other bound states in muonic molecular ions@17#. How-
ever, such weakly bound states are of interest in some a
cations~see, e.g.,@18#!.

For the ground states in theppm and ddm ions, highly
accurate calculations have been recently performed@1#.
Comparison of our present results with analogous res
from @1# seems to be very interesting. Note that the meth
used in@1# is essentially a version of the two-stage strate
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developed in@6#. For the symmetric muonic ionsppm and
ddm our presently used booster functions coincide exac
with those functions used in@1#. To illustrate the advantage
of our present approach we decided not to use any boo
function for all other considered systems, i.e., for the 23S
state of the`He atom, for theddm ion in its excited~1,1!
state and fordtm ion in its both~1,0! and ~1,1! states.

The results of our present calculations are presente
Tables I and II. Table I contains highly accurate energies
the 23S state of the`He atom. The total number of bas
functions used in calculations varies from 600 up to 2700
general, the total energies presented in Table I are sig
cantly more accurate than analogous results known from
vious calculations. A large number of other bound-state pr
erties for the 23S state of the`He atom have been compute
earlier @1#. For most of these properties our present valu
coincide almost exactly with the values determined in@1#.
Note only that our computed value for the electron-nucle
cusp@19,20# (21.999 999 999 996 81 a.u., forN52500) co-
incides with the exact value (22.0 a.u.) in 12 significant
figures. The corresponding value for the electron-nucl
delta functions is 1.320 355 082 930 3 a.u.

Variational energies for the muonic molecular io
ppm, dtm, and ddm can also be found in Table I. Al
energies for these systems are presented in muon-at
units (\51,e51,mm51). The particle masses used
our present calculations aremp51836.152 701me ,
md53670.483 014me , mt55496.921 58me , and mm
5206.768 262me @21#. In all cases optimization of the non
linear parameters has been performed forN5600 basis func-
tions. Note that the results obtained withN5600 basis func-
4-4
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TABLE II. The expectation valueŝXi j & in muon atomic units (mm51,\51,e51) of some properties for
the ground (0,0) states in theppm and ddm muonic molecular ions. The notations 1 and 2 designate
hydrogen nuclei, while 3 stands for the muon (m2).

^Xi j & ppm ddm

^d31& 0.131 500 862 0.158 738 97
^d21& 0.393 700 531024 0.243 87131025

^d321& 0.554 3031024 0.427431025

n31 20.898 787 919 95 20.946 671 449 2

n̄31
a 20.898 787 928 781 951 609 94 20.946 671 431 052 228 77

n21 4.440 106 25 8.875 716

n̄21
a 4.440 122 200 669 269 058 32 8.875 837 564 471 088 95

«b (eV) 2253.150 192 338 596 952 1 2325.070 689 006 603 665

aThe exact values from Eq.~6!.
bThe binding energy. The conversion factor is 27.211 396 1(mm /me).
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tions for such systems have comparable and even b
accuracy than our previous results from@16,22# computed
with N51000 and 1200 basis functions. However, it may
more important to note that in contrast with the original tw
stage approach@6#, the presently performed optimization sig
nificantly improves the overall accuracy of the wave fun
tions with total number of basis functionsN>600.

Table I also includes the best variational results known
the corresponding systems from earlier calculations~see
@1,16#!. In fact, the results of our present calculations~ener-
gies and bound-state properties! for all considered muonic
molecular systems have significantly better accuracy than
sults known from earlier calculations@23#. In general, the
accuracy of our present variational calculations for muo
molecular ions is quite comparable to the accuracy of
best atomic computations. In particular, by using our pr
ently developed approach we can finally solve the lo
standing problem of highly accurate determination of
weakly bound~1,1! states in theddm anddtm muonic mo-
lecular ions. Indeed, by using the results presented in Tab
one can easily evaluate the binding energies for the we
bound ~1,1! states in theddm and dtm muonic molecular
ions as follows:

«~ddm!521.974 988 088 065310210 eV,

«~dtm!520.660 338 746131028 eV,

where the conversion factor 27.211 396 1(mm /me) has been
used. In other words, these weakly bound states are
known with the absolute error less than 631026 K and
3.731025 K, respectively. Here, the conversion factor
11 604.448 K•(eV)21. Finally, these energy levels hav
been determined with accuracy that is obviously suffici
for future experiments. The comparison of energies fr
Table I with the results obtained in@15# shows amazing
progress relative to the 1985 level of computation
technology.

The highly accurate wave functions can be used to de
mine the expectation values of many bound-state proper
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e.g., the nuclear-nuclear and three-particle delta functi
and two-particle cusps@19#. The results for some of thes
expectation values for theppm andddm ions @ground~0,0!
states# are presented in Table II. They include expectati
values for the delta functions (d31, d21, andd321! and cusps
(n31 and n21). Here and in Table II the notations 1 and
designate the hydrogen nuclei (p or d), while 3 means the
negatively charged muon (m2). A large number of other ex-
pectation values for these systems can be found in@22#. The
two-body cusp is determined in a traditional manner@19#:

n i j 5

K d~r i j !•
]

]r i j
L

^d~r i j !&
, ~5!

where d i j 5d(r i j ) is the appropriate Diracd function and
( i j )5(32), (31), and (21). The exact~or predicted! value
of the two-body cuspn̄ i j equals@20#

n̄ i j 5qiqj

mimj

mi1mj
, ~6!

where qi and qj are the charges andmi and mj are the
masses of thei and j particles (iÞ j 51,2,3). Obviously, for
the considered symmetric systems^d(r31)&5^d(r32)&,n31

5n32, and n̄315 n̄32. In general, the coincidence betwee
the predicted and computed two-particle cusp values in
cates the quality of the wave functions. For the systems p
sented in Table II such a coincidence is very good.

Thus, in the present study, the advanced, multibox va
tional approach has been proposed to perform high
accurate, variational, bound-state calculations for three-b
systems. The proposed approach is found to be very flex
since the final variational wave function can also include
large number of separately optimized cluster fragments. T
version of the method can be called the improved two-st
strategy@6#. The very high efficiency of our present approa
is based on an optimal and simple choice of nonlinear
rameters in the trial wave functions. The nonlinear para
4-5
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eters are chosen quasirandomly from three~also from five,
seven, ten, etc.! different and optimized boxes. The approa
has been tested for a large number of quite complica
three-body systems. It was found that this approach wo
very effectively and surprisingly well for all such systems.
fact, we can say briefly that this method for highly accur
three-body calculations has been developed and success
tested for a large number of three-body systems. Note
y
n

03670
d
s

e
lly

so

that our present universal approach can be used to solve
ous three-body problems with, in principle, arbitrary pre
sion.
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